

AuScope infrastructure providing a 'telescope' looking into the Australian continent.

Dr. Tim Rawling, CEO, AuScope

1 Introduction

03 eResearch Strategy

02 Infrastructure

Programs

04 Future

Opportunities

What is AuScope?

• MinEx Consulting (Richard Schodde) 2015, "Exploration trends, inds and issues in Australia". Excludes satellite deposits in existing camps and bulk mineral discoveries.

Australian Context

- Australia is old, cold and cratonised.
- Minerals search space is maturing, and exploration is being forced deeper under transported cover.

Australian Context

- □ Large, fast moving plate
- Complex active plate boundaries and geoid geometries
- ☐ Highly stressed crust mostly in compression and underestimated seismic hazard

AuScope History

- Established in 2006 to implement an
 Earth and Geospatial Science
 Infrastructure program
- National Collaborative Research
 Infrastructure Strategy (NCRIS)
 Program "Structure and Evolution of the Australian Continent"
- \$75M Commonwealth investment
 \$34M cash and \$128M in-kind
 co-investment from partners

AuScope Purpose

To create universal access to earth and geospatial research infrastructure (equipment, data, analytics) to drive:

- Innovative Australian scientific research
- Support scientific investigations in government and industry

AuScope Model

Infrastructure Programs

Geospatial Program

- Responsible for acquisition and deployment of VLBI telescopes, GNSS sites, absolute gravity measurement, GPS calibration robots and satellite laser ranging sites throughout Australia
- Provides data that underpins
 Australia's dynamic geodetic
 framework: observing movement,
 change and deformation in the
 Australian plate

Earth Imaging Program

- Works with GA and state GSO's to support deployment of AusArray Passive Seismic and AusLAMP MT Arrays
- Manages an OBS research fleet
- Supports the national reflection seismic transect program

Earth Imaging Program: Magnetotellurics

- Australian Lithospheric Architecture
 Magnetotelluric Project (AusLAMP)
 program
- Collaboration with UA and GA
- National long-period MT data at approx. 2,800 sites across Australia to map electrical conductivity of the continent in three dimensions

Earth Composition Program

- Provides operational support for a suite of world-class analytical infrastructure
- Infrastructure is located at Curtin University, University of Melbourne and Macquarie University and includes LIMS, SHRIMP, Fission Track and TerraneChron access.
- Provides researchers with geochronological and geochemical data necessary to understand the formation mechanisms and evolution of the Australian continent

Materials & Properties Program: National Virtual Core Library (NVCL)

- Annually, ~\$600M is spent on drilling in Australian, but too often core is only partially logged, and then discarded
- ☐ This program overcomes this massive underutilisation of core for research and thus, new mineral discoveries

Materials & Properties Program: National Virtual Core Library (NVCL)

- Facilitates collection, storage and discovery of high quality, semi-quantitative hyperspectral mineralogical data from drill core
- Over 10,000 km of historical core logged from across Australia
- □ 10s of research papersproduced in 2016 2017

Outreach: Seismometers in Schools (AuSIS)

- Deployment of research-quality instruments into Australian secondary schools
- Provides resources for student engagement in geoscience
- Simultaneously provides data to researchers about Australian crustal movements

eResearch & Data Strategy

IGSN: IECUR008F

IECUR008F.classification.png

(primary image)

IGSN: IECUR008F Sample Name: 143784M

Other Name(s):

Sample Type: Rock Powder Parent IGSN: IECUR001B

Description

Material: Rock

Classification: Sedimentary>Siliciclastic

Field Name: Dovers Hills

Description: The sample is the magnetic separa

Not Provided

Age (max): 465 million years (Ma)
Collection Method: surface collection

Description:

Collection Method

Age (min):

Not Provided Not Provided

Geological Age: Permo-Carboniferous
Geological Unit: Paterson Formation
Comment: Not Provided

Purpose: The maximum depositional age fo

Geolocation

Latitude (WGS84): -23.11865 Longitude (WGS84): 128.7915 Northing (m) (UTM NAD83): 7443330

Easting (m) (UTM A78651 NAD83):

Zone: 52K Vertical Datum: NAVD88 Elevation: 456

Nav Type: GPS Physiographic Feature: Hill

Name Of Physiographic Dovers Hills

Location Description: Gibson Desert North

Locality: Dovers Hills

Locality Description: This sample was collected from th Dovers Hills, and 1.7 km north of

Country: Australia

State/Province: Western Australia
County: Gibson Desert North
City: Gibson Desert North

Collection

Field Program/Cruise: Geological Survey of Western Aust

Platform Type: Not Provided

IGSN and **LIMS**

- IGSN is a unique alphanumeric code assigned to specimens and related sampling features to ensure their unique identification
- ☐ GA, CSIRO and Curtn/AuScope

Simulation, Analysis & Modelling (eResearch) Program

- A toolkit for 3D and 4D modelling, simulation analysis and data mining for geoscientists in Australia
- New data assimilation workflows ensure models are constrained by observational data collected with other AuScope infrastructure

AuScope Grid

- ☐ The AuScope Portal, the Virtual
 Geophysical Laboratory (VGL) and
 the Data Enhanced Virtual Laboratory
 (DeVL) provide access to data
 collected or generated by both
 AuScope and collaborating partners
- Data is freely accessibly,
 findable and interoperable
- New development with DeVL
 will ensure data is FAIR –
 Findable, Accessible,
 Interoperable and Reusable

AuScope Grid & Research Codes

- Cloud enablement of research codes such as Underworld2, eScript and gPlates drives collaboration
- Also supports tertiary teaching and student use

SISSVoc

- Provides semanticweb-based vocabularies
- □ RESTful interface
- Allows humans and machine readable views
- Significant contribution to the domain
- Mostly through work led by Simon
 Cox with NeAT, then AuScope funding
- Used by Australian Government and other high profile groups

SISSPid

- □ Persistent Identifier Service
- Used by CSIRO, BoM,GA and internationally
- Initially under NeAT but then furthered by AuScope Grid and ANDS ASRDC project

Virtual Laboratories

- Initially linking data to computation
- VLs now instrumental in orchestrating workflows
- Scientific Software Solution
 Centre (SSSC) provides registry
 for workflows that can be human
 and machine discoverable –
 and executable on the fly
- Collaboration

AuScope Data Enhanced Virtual Research Environment

Future Opportunities

National Innovation & Science Agenda

- □ \$1.5B commitment over 10 years
- Highlighted 9 x research infrastructure areas that will transform Australian research and deliver returns for community and industry partners
- Inward focussed Earth monitoring and exploration, potential development of inward-looking 'telescopes'

National Innovation & Science Agenda

- Enhanced capability for AuScope to include new Earth monitoring data, and utilise new remotely sensed data and visualise data
- Key requirement for generational shift in technology resources and interconnectivity of all facilities
- Including establishing a virtual laboratory network to enable large data share (incl. digitised collections) and improve real-time communication

Future Focus

NISA and the NRIR provides an enormous opportunity for AuScope and the geoscience community as a whole

Possibility for significant new investment in national programs in support of research initiatives such as UNCOVER

Building a Downward looking earth telescope

AuScope has developed two investment roadmaps over the last 5 years (available from our website)

AuScope is seeking community feedback regarding investment priorities over the coming decade

We will be hosting a workshop immediately after the AGCC conference in Adelaide in October and we welcome your input at this event

Thank you

w auscope.org.au

auscope

in auscope

e trawling@
unimelb.edu.au