
The Alkaline Igneous Source of Cu, Co, Ni, REE, PGE, Au and U in the Mary Kathleen Belt, Mount Isa Block.

> Prof. Ken Collerson Ph.D., FAusIMM & Richard Hatcher, MAIG & MSEG

School of Earth and Environmental Sciences, UQ KDC Consulting, Brisbane, Principal Geologist, FGI Geological Services, Brisbane

MESSAGES TO TAKE AWAY

- Cu-Au-Co-PGE-REE mineral deposits in the MKB are not SKARN deposits, they are orthomagmatic and epithermal systems.
- Metal association Cu, Ni, REEs, U, Th and PGEs indicates mineralisation derived from an alkaline magmatic source.
- This post tectonic alkaline mineralisation event occurred at ~1526 Ma.
- Associated epithermal Au and Ag mineralisation indicates that alkaline intrusions were emplaced to shallow depths.
- New model for MKB mineralisation has direct relevance to IOCG exploration in the adjacent Cloncurry Belt.

OUTLINE

- Review relative chronology based on field and core observation at Elaine Dorothy and Blue Caesar.
- Discuss geochronological (absolute chronology) constraints.
- Present geochemical data for Elaine Dorothy and Blue Caesar cores.
- Demonstrate that multi-element mineralisation is posttectonic, related to alkaline magmatism at ~1526 Ma.
- Discuss a mineral system geodynamic model.

PROBLEM WITH EXISTING METALLOGENIC MODEL Cruikshank et al., (1980) Oliver et al., (1999)

- U-REE mineralisation in Corella Fm. "skarns" believed to have been introduced by regional metamorphic/hydrothermal fluids associated with "contact metasomatism".
- Metals plus heat and fluids derived from the ~1740 Ma Burstall granite.
- BUT TIMING OF U-Th MINERALISATION is between
 ~ 1550 and 1500 Ma <u>NOT</u> 1740 Ma.
- MKB metal association is also inconsistent with a granitic source skarn deposit!

MK higher U/Th ratio than Burstall Granite Burstall Granite higher Th/U ratio than MK

Mary Kathleen Mine

Blue Caesar & Elaine Dorothy

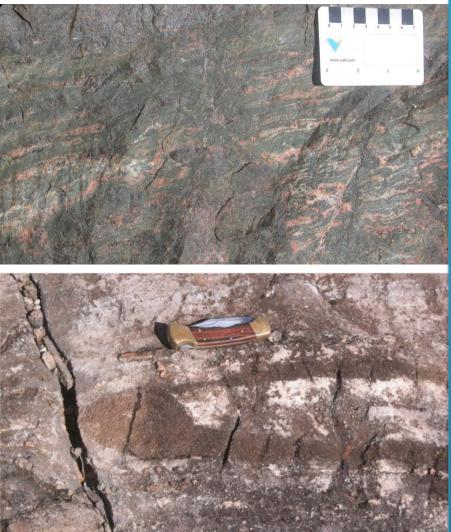
Thorium ²³²Th

Mary Kathleen Mine

Blue Caesar & Elaine Dorothy

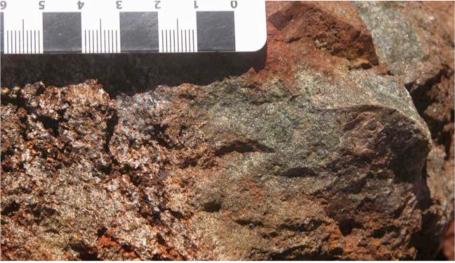
Uranium ²³⁸U

MARY KATHLEEN BELT – OLDEST TO YOUNGEST RELATIVE CHRONOLOGY


- > Deposition of Corella Fm. calc silicate protoliths ~ 1770 ± 6 Ma
- Thermotectonism isoclinal folding producing transposed layering with rootless intrafolial folds.
- > Corella Fm. compositional boundaries are tectonic.
- Intrusion of Lunch Creek Gabbro/ A-type Burstall granite
- > Thermotectonism.
- Intrusion of post-tectonic alkali pyroxenites, ijolites and phoscorites (carbonatites?) associated with glimmerite and ultramafic lamprophyre sills and dykes.
- Mineralisation associated with these units constrained by titanite U-Pb geochronology: ²³⁸U/²⁰⁶Pb 1526±11 Ma and ²⁰⁷Pb/²⁰⁶Pb 1524±9 Ma (Sha *et al.*, 2015)

CALC SILICATES OF THE CORELLA FM.

Protoliths of Corella Formation are marine carbonates and marls.


140° 01.145 E; 20° 47.754 S

KDC²

RELATIVE CHRONOLOGY OF THE MARY KATHLEEN BELT – OLDEST TO YOUNGEST

- > Deposition of Corella Fm. calc silicate protoliths ~ **1770 ± 6 Ma**
- Thermotectonism isoclinal folding producing transposed layering with rootless intrafolial folds.
- > Corella Fm. compositional boundaries are tectonic.
- > Intrusion of Lunch Creek Gabbro/ A-type Burstall granite
- > Thermotectonism.
- Intrusion of post-tectonic alkali pyroxenites, ijolites and phoscorites (carbonatites?) associated with glimmerite and ultramafic lamprophyre sills and dykes.
- Mineralisation associated with these units constrained by titanite U-Pb geochronology: ²³⁸U/²⁰⁶Pb 1526±11 Ma and ²⁰⁷Pb/²⁰⁶Pb 1524±9 Ma (Sha *et al.*, 2015)

POST-CORELLA MAGMATISM

Meta-gabbro/pyroxenite. Mafic body that cut the Corella Fm. prior to thermotectonism

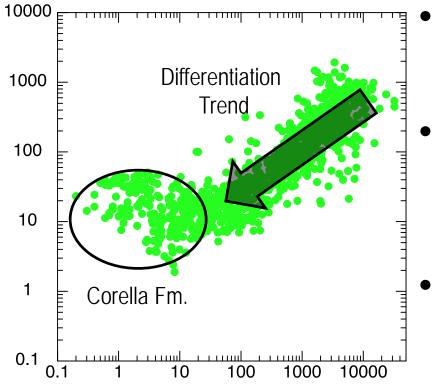
140° 01.287; E 20° 48.241 S

Harrisitic olivine in ultramafic lithology possibly associated with gabbro/pxite intrusion

140° 01.857; E 20° 46.379 S

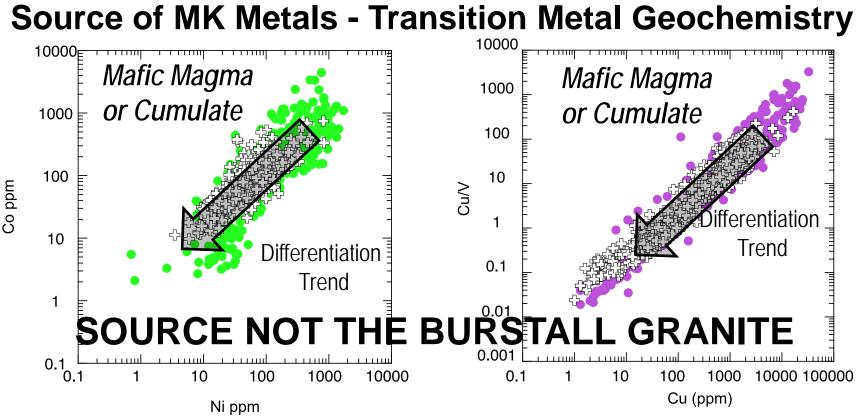
POST-CORELLA MAGMATISM

"Burstall Gr." Dacite or Rhyolite


140° 02.015 E: 20° 46.336 S

Ophitic and sub-ophitic texture in Lunch Creek Gabbro

140° 01.857 E; 20° 46.379 S



SOURCE OF MARY KATHLEEN BELT METALS TRANSITION METAL GEOCHEMISTRY

Ni ppm

- Covariation between Ni & Cu in Elaine Dorothy and Blue Caesar core. Transition metals (Cu, Ni, Co, V) were derived from a differentiated mafic igneous source.
- Granites are not enriched in these elements so Burstal Granite not involved.

Covariation between Ni and Co also supports derivation of the transition metals from a mafic igneous source

Fractionation of a mafic igneous magma explains the covariation between Cu and Cu/V

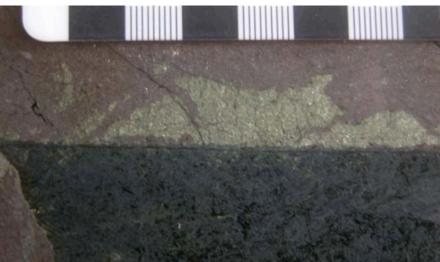
RELATIVE CHRONOLOGY OF THE MARY KATHLEEN BELT – OLDEST TO YOUNGEST

- > Deposition of Corella Fm. calc silicate protoliths ~ **1770 ± 6 Ma**
- Thermotectonism isoclinal folding producing transposed layering with rootless intrafolial folds.
- > Corella Fm. compositional boundaries are tectonic.
- Intrusion of Lunch Creek Gabbro/ A-type Burstall granite
- > Thermotectonism.
- Intrusion of post-tectonic alkali pyroxenites, ijolites and phoscorites (carbonatites?) associated with glimmerite and ultramafic lamprophyre sills and dykes.
- Mineralisation associated with these units constrained by titanite U-Pb geochronology: ²³⁸U/²⁰⁶Pb 1526±11 Ma and ²⁰⁷Pb/²⁰⁶Pb 1524±9 Ma (Sha *et al.*, 2015)

PHOSCORITE (APATITE-PYROXENITE) DYKES INTRUDE GRANITES AND CORELLA FM. CALC SILICATES

Pyroxenite dyke cutting outcrop of deformed aplite 140° 00.867 E 20° 47.793 S

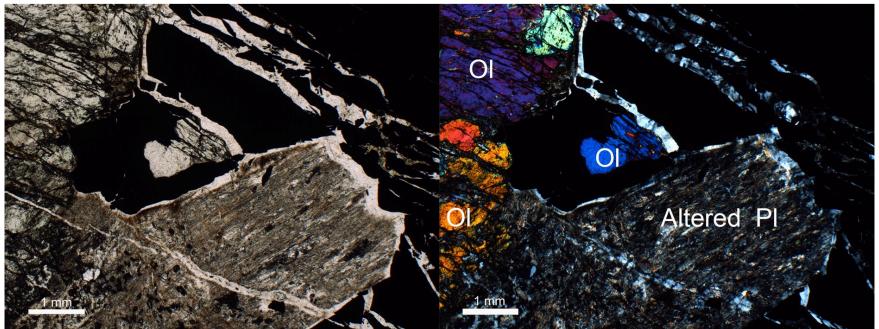
Pyroxenite cutting transposed layering in Coralla Fm. Core @ 185 m



POST CORELLA FM. ALKALINE DYKES Evidence for post tectonic intrusions. Pyroxenite dykes

- Titanite yields: ²³⁸U/²⁰⁶Pb 1526±11 Ma and ²⁰⁷Pb/²⁰⁶Pb 1524±9 Ma (Sha *et al.,* 2015).
- Within error of Sm-Nd isochron for Mary Kathleen mineralisation;
 1557±40 Ma Maas *et al.*, (1987)
- Cu and U-REE mineralisation derived from same source.

KDC²



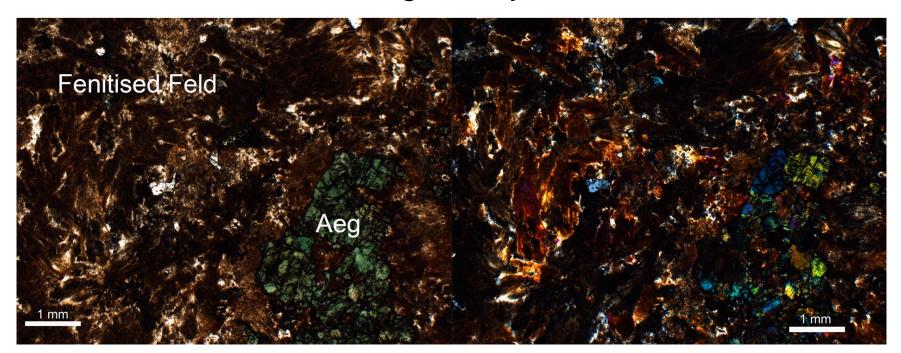
TIMING AND SOURCE OF METALS

- Alkali syenite and aegirinebearing pyroxenite
- Cut by carbonate fluorite vein with chalcopyrite and pyrite.
- Sulphide mineralisation pyrrhotite, pyrite, chalcopyrite and digenite.
- Mineralisation intrudes and brecciates units of pyroxenite.
- Segregation and emplacement of sulphide mineralisation occurred at ~1526 Ma.

KDC²

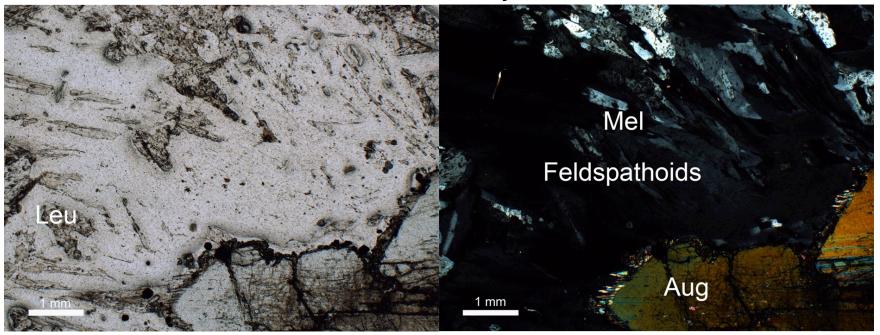
Mary Kathleen Belt 1526 Ma Alkaline Suite -Ijolite – Phoscorite – Foid Syenites

Plane Polarised Light


Cross Polarised Light

KDC²

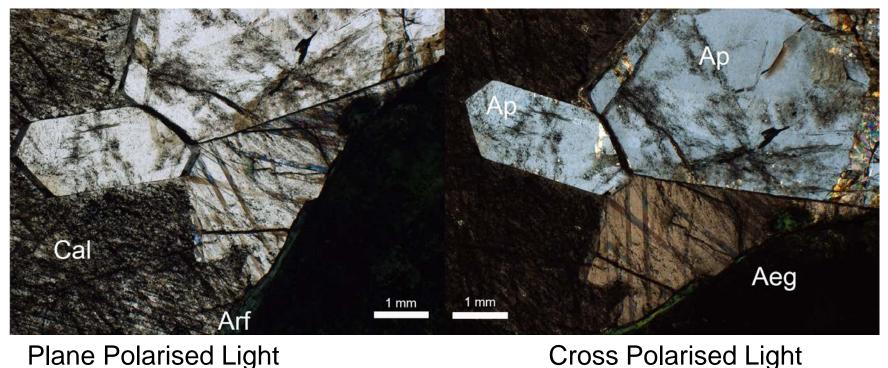
MKED 014 - 268.7 m


Opaques are Ni-rich pyrrhotite

1526 Ma Alkaline Suite – Mary Kathleen Belt Aegirine Syenite

Plane Polarised Light MKBC 004 – 143.5 m Cross Polarised Light Post-tectonic Panidiomorphic granular feldspar textures showing pervasive alteration by carbothermal fluids

1526 Ma Alkaline Suite – Mary Kathleen Belt Leucite Syenite

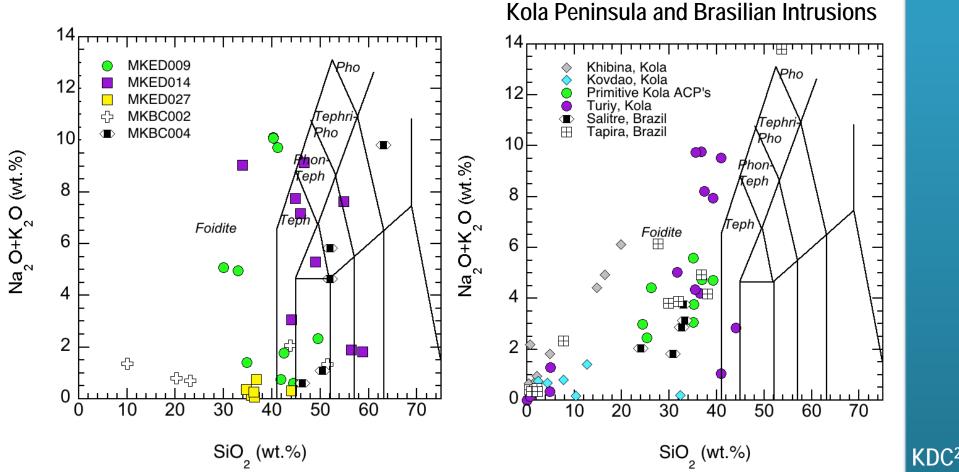

Plane Polarised Light

Cross Polarised Light

KDC²

MKED 014 – 260 m

1526 Ma Alkaline Suite – Mary Kathleen Belt **Post-tectonic Carbothermal Veins**



Cross Polarised Light

MKBC 004 – 142 m

CRYPTIC RECORD OF ALKALINE LITHOLOGIES IN MKB BLUE CAESAR AND ELAINE DOROTHY CORES

Constraints on Source of MK Deposits from REE Chemistry

Mary Kathleen Belt ore is strongly LREE enriched.

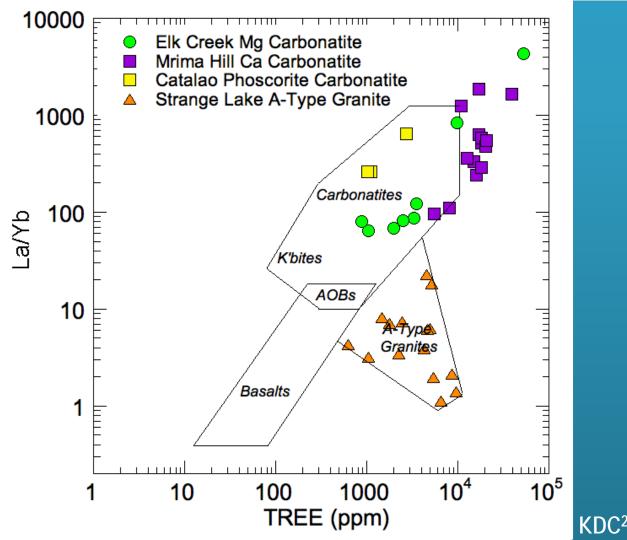
- Burstall granite pattern typical of A-type (alkali) granites.
- > Non-fractionated pattern.
 - Similar levels of LREE and HREE with strong negative Eu.

Ce Nd Eu Tb Ho Er Yb La Pr Sm Gd Dy Y Tm Lu Data from Maas *et al.*, (1987)

REE ENRICHMENT IN ALKALINE INTRUSIONS

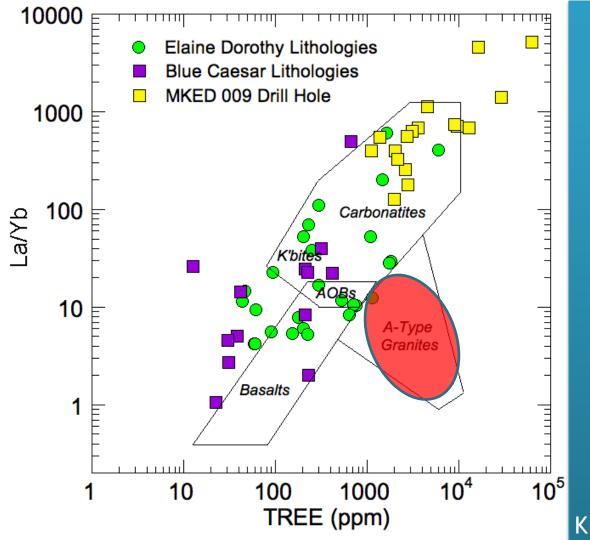
- Mary Kathleen Belt samples patterns and levels of REE enrichment are similar.
- REEs most likely derived from an alkaline igneous intrusion.

Blue Caesar Cores Ce Nd Eu Tb Ho Er Yb La Pr Sm Gd Dy Y Tm Lu

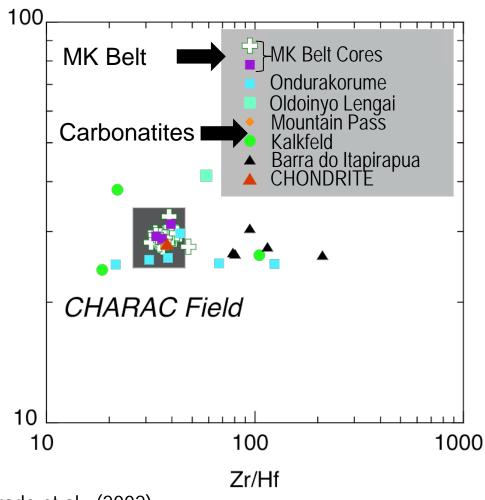

Gardar Province Alkaline intrusions Ce Nd Eu Tb Ho Er Yb La Pr Sm Gd Dy Y Tm Lu

irine Lujavrite

Similar to nepheline syenites fractionated LREE-enriched patterns, prominent –ive Eu anomalies and slightly fractionated HREEs. Discrimination Plot for Identifying the Source of Metals Using REE Systematics


- REEs, and alkali metal enrichment in carbonatites reflects concentration and transport in a super critical fluid.
- Not crystal-liquid fractionation

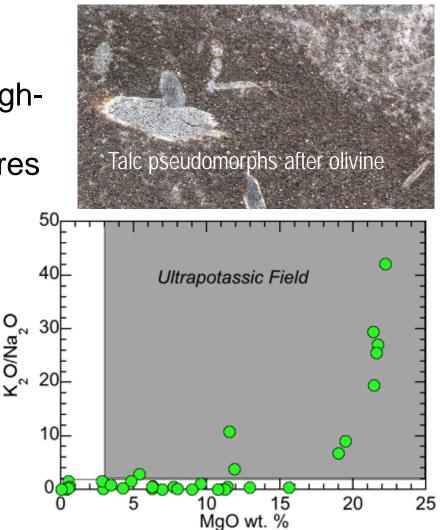
Loubert et al., (1972)


Source of MKB Metals from REE **Systematics** \succ REEs, actinides, PGEs, Ni, Co, Cu and Au in the Mary Kathleen Belt derived from a mafic alkaline

 magmatic source.
 The metals in MK deposits were not derived from an Atype granitic "Burstall Source"

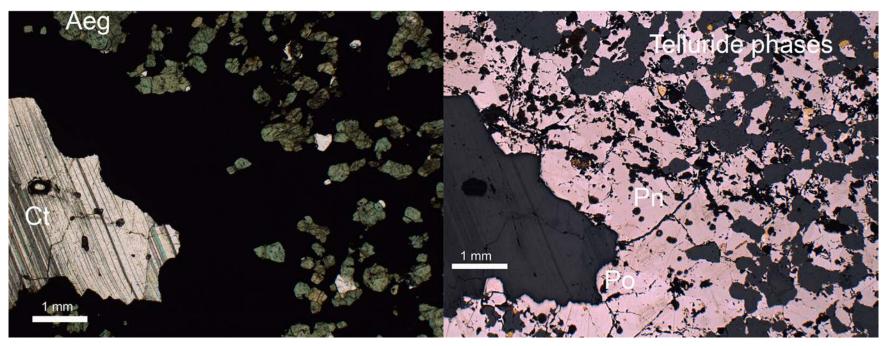
PRIMITIVE METAL SOURCE

- Blue Caesar and Elaine Dorothy Cores cores have CHONDRITIC Y/Ho and Zr/Hf ratios.
- Indicates igneous source²
- Most carbonatites plot in the same field for Y/Ho.
- Some exhibit HFSE fractionation – nonchondritic Zr/Hf ratios



Data from de Andrade et al., (2002)

THE SMOKING GUN!!


Presence of ultra-potassic high-Mg alkaline dykes in Elaine Dorothy and Blue Caesar cores

- Post-tectonic ultramafic lamprophyres (glimmerites) occur in some MK Belt cores.
- Logged as pelitic schists
- Their ultramafic affinity and intrusive relations were not reported.

KDC²

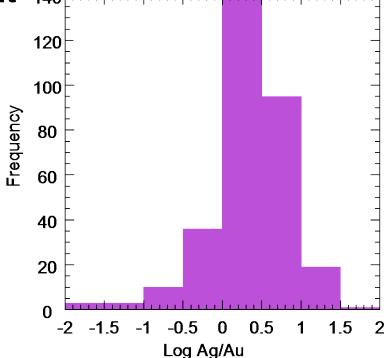
1526 Ma Alkaline Suite – Mary Kathleen Belt Orthomagmatic Mineralisation in Alkali Proxenite

Plane Polarised Light

Reflected Light

MKBC 002 – 47.9 m

MINERALISATION STYLES in THE MKB Epithermal Ag/Au Mineralisation in MK Belt Indicates Shallow Depth of Emplacement 140


Cole and Drummond, 1986

Variation in Ag/Au ratios in epithermal ore deposits reflects:

Reflects transport and partitioning of Au and Ag in precious metalbearing fluids during boiling.


Shikazono and Shimizu,1987

Decreasing Ag/Au ratio the influence of increasing Cl⁻ in the fluid and increasing temperature

Log normal Ag/Au ratios of Mary Kathleen Belt cores show mineralisation occurred under low pressure conditions.

FIELD EVIDENCE OF EPITHERMAL SHALLOW MINERALISATION

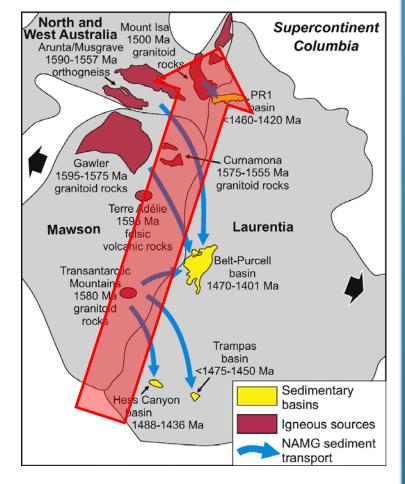
Vugh in vein cutting pyroxenite. evidence of late epithermal boiling fluids.

Brecciated alkali pyroxenite cemented by siliceous vein deposit.

Implies shallow depth of emplacement <1 km?

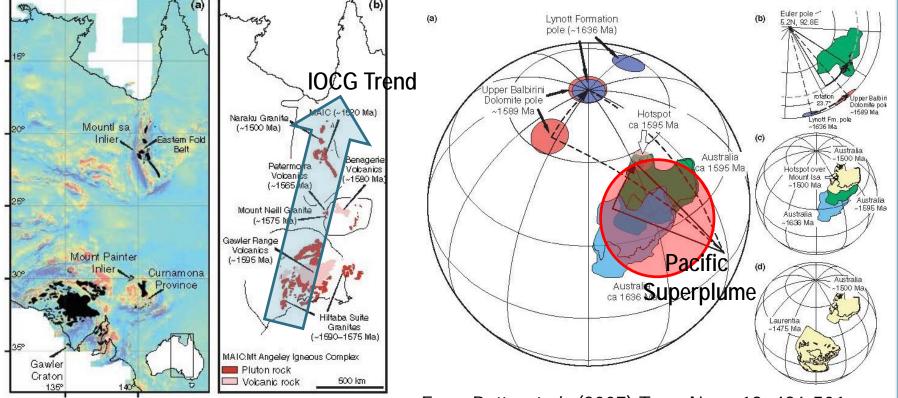
SUMMARY TIMING OF MK BELT MINERALISATION

- Mineralisation constrained by ~ 1526±11 Ma U-Pb titanite & Ar-Ar biotite ages of pyroxenite veins (Sha *et al.*, 2015).
- > Age of Mary Kathleen uraninite ore 1550±15 Ma (Page 1983) is within error (1535 Ma) of this age.
- Sm-Nd isochron 1472±40 Ma also within error of age (1512 Ma) Maas *et al.*, (1987).
- > THUS Mary Kathleen mineralisation related to a POST TECTONIC ALKALINE EVENT
- Similar mineralisation age in Cloncurry Belt IOCGs
- > Mary Kathleen Belt Deposits and CB IOCGs are related.


METALLOGENIC-GEODYNAMIC INTERPRETATION

Configuration of North and West Australia, Laurentia, and Mawson continent (South Australia Gawler Craton and Antarctica) in the supercontinent Columbia at ~ 1450 Ma.

Cause of the Mesoproterozoic break-up of western Columbia is unresolved.


Possibly rifting due to plume impact on the lithosphere, as Columbia passed over the Pacific Superplume.

After Medig et al., (2014) Precambrian Research

KDC²

GEODYNAMIC INTERPRETATION-ALKALINE SYSTEMS DEFINE A MESOPROTEROZOIC PLUME TRACK

From Betts *et al.*, (2007) Terra Nova 19, 496-501

KDC²

SUMMARY MESSAGES

- Cu-Au-Co-PGE-REE mineralisation in the MKB are not SKARN deposits, they are orthomagmatic and epithermal.
- Mineralisation was caused by mantle plume generated potassic alkali phoscorite-carbonatite igneous activity.
- Epithermal Au and Ag mineralisation indicates that the alkaline intrusions were emplaced to shallow depths.
- New model for MKB mineralisation has direct relevance for IOCG exploration in the adjacent Cloncurry Belt.
- Confirms link between phoscorite-carbonatite magmatism and IOCG mineralisation (Groves and Vielreicher, 2001).

IMPLICATIONS FOR EXPLORATION

- Development of this new understanding of MKB geology confirms the importance of field observations, petrology, geochemistry and geodynamics in exploration.
- Improved knowledge of the nature of exploration targets in the MKB and the Cloncurry Belt will improve interpretation of geophysical and geochemical anomalies.
- Multi-element targets likely to be pipe-like concentrically zoned intrusions ranging from <1 to >5 km in diameter.
- Elaine Dorothy and Blue Caesar are the branches of such a target, the trunk has still to be found.