New Energy Industry Cooperative Research Centre

Ore to energy systems – Smart conversion of Australia's energy materials

February 2018

Cooperative Research Centres (CRCs) Explained

The Australian Government CRC program is a proven model that supports industry-led collaborations between industry, researchers and the community within Australia and internationally to develop new technologies, products and services.

It aims to:

- Boost the commercial returns from research while providing the flexibility required to respond to emerging economic challenges and opportunities.
- Link researchers with industry to focus on research and development that is geared towards end use and commercialisation
- Allow participants to share IP and partake in commercialisation
- Improve the competitiveness, productivity and sustainability of Australian industries, especially those with a competitive strength

CRC background:	
CRCs are funded (50/50 Industry/Government) for up to 10 years.	
210 CRCs have been funded since inception in 1991.	
CRCs have undergone several independent reviews, all concluding the program has delivered significant economic, environmental and social impacts.	
31 active CRCs including:	5
CRC for Optimising Resource Extraction (International Collaborations in Bolivia, Canada, Chile, France, USA, UK, PNG, South Africa)	
Deep Exploration Technologies CRC (International Collaborations in Bulgaria, Canada, China, Finland, France, Germany)	
Energy Pipelines CRC (International Collaborations in Canada, China, Japan, UK, USA)	J
PHP	

The Case for New Energy Industry Capacity Building

Why Now?

- Rapidly increasing demand (and prices) for Energy Materials for the New Energy Industry
- Australia is positioned to become a global leader

Why Australia?

- Australia is abundantly rich in Energy Materials that underpin the New Energy Industry
- Strong skills in exploring, mining and production
- Increase value-add into refining and efficient production of finished (customised) products
- Established technology and infrastructure base
- Alternative supply chain for geographic markets/customers (e.g. ASEAN countries)

What's the Value Proposition?

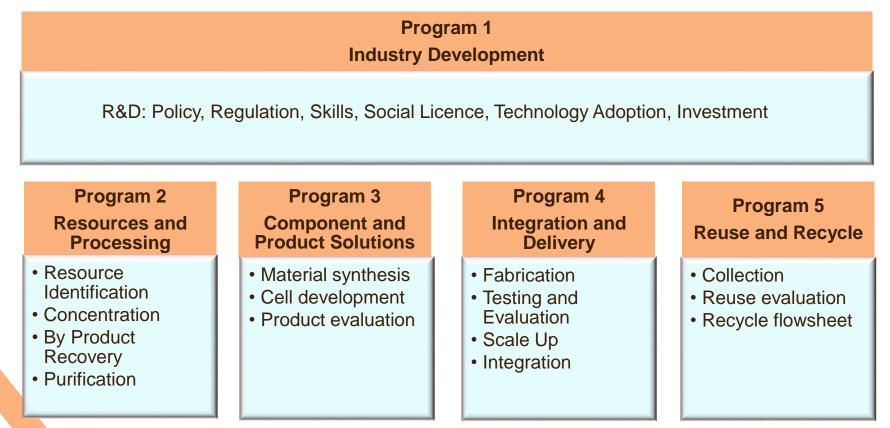
- Connecting material producers, METS and end users (building the ecosystem and critical mass)
- Connecting companies with world class research and development
 - Growing existing companies and new opportunities for commerce


Defining New Energy Materials for the New Energy Industry:

Minerals, compounds, materials, devices and technologies that are mined, refined, produced or manufactured for the production, storage, transmission and utilisation of energy

New Energy Industry CRC

aims to transform Australia's Energy Materials delivering industry leadership in advanced knowledge, process and business models to meaningfully contribute to the full energy value chain


Value Chain Research Opportunities CRC

- Manufacturing next generation energy materials that bolster efficiency, reliability and security of globally transforming energy systems
- Energy storage systems for domestic, industrial and defence applications
- Designing and manufacturing next generation products, including integration and control technologies
- Developing comprehensive re-cycling capacity for high value energy materials
- Establishing government policies and regulations to spring board New Energy industry domestic and export growth
- Securing public trust and social licence for new industries and technologies
- Selling high-value energy industry materials, technologies and services to global markets.

CRC Program Design

The New Energy Industry CRC programs would enable full value chain participation. Programs will have industry input and assessments of projects to guide commercialisation strategies.

Potential Research Projects

	Program 1 Industry Development	Program 2 Resources and Processing	Program 3 Component and Product Solutions	Program 4 Integration and Delivery	Program 5 Reuse and Recycle
Value Proposition	 Grid stability Lower energy prices Manufacturing industry investment 	 Low cost delivery of feed materials into Global Energy Storage supply chains 	Fit for Purpose Storage Systems (capacity, cost, charge/discharge rate, lifetime)	 Fully functioning Applications - e.g. Grid Frequency Control Load Following Spin Response / Voltage Support / Black Start 	 Circular economy outcomes - lower costs due to material recycle
Potential Research Projects	 Policy to enhance recycling of batteries 	 Low cost pathways to produce Lithium Carbonate from Lithium Silicates and other sources 	 Next generation storage solutions: Synthesis pathways for Li-Ni-Mn-Al batteries Fabrication of high surface area material structures to allow high charge transfer lower costs 	 Modelling reduced congestion charges with Energy Storage Modelling increases in capacity for variable renewable resources 	 Integrated processing and recycling of raw and recycled materials streams
	 Investment attraction for battery manufacturing 	 Low cost pathways to produce metal sulphates for batteries from processing stages 	 Alternative low cost electrode materials: Use of graphene and carbon nanostructures to increase electrochemical activity 	 Modelling reduced power network infrastructure needs and costs with Energy Storage 	 Policy settings to encourage collection and recycle
	 Techno – Economic optimisation of market rules for new energy system 	 Low cost pathways to recover by-products from smelter streams (e.g. Se/Te in Copper streams, In/Ge in Zinc Stems) 	 Improves in service: In-Situ Sensors for Cell nano- Structural changes with charge /discharge cycle 	 Modelling of multiple interacting micro-grids with Energy Storage and modelling time of use bill management and increased solar PV use 	• By-Product recovery from other e-waste integrated into battery materials supply chains

Next Steps

- Continue to define scope for CRC with stakeholder input
- Extend consultation with industry and government to confirm priority needs
- Identify existing knowledge, capabilities, gaps and opportunities
- Define research programs and projects
- Formalise governance structure
- Submit CRC EOI June 2018

