Integrating insights from geophysics, geochemistry and structural geology in 3D to understand mineral systems

Examples from Eastern Succession, Mt Isa Inlier

Jim Austin + Ben Patterson, Michael Gazley, John Walshe Belinda Godel, Steph Hawkins, Matt Sisson

www.csiro.au
Exploration Undercover
Batting Order

- Why are we (still) confounded about Cloncurry
- What new techniques are we using
- An example of the outputs from Ernest Henry
- What are the relationships between:
 - Structural Controls and Mineralisation?
 - Different generation Structures and different alteration styles?
 - Alteration, Redox and Magnetic signatures?
- How can we use these insights to explore under cover??
Cloncurry Mineral Systems

- Pb-Zn-Ag BHT deposit (Cannington)
- Mt-rich IOCG Breccia Pipes (e.g., Ernest Henry)
- Au-rich, Mt-poor, Po-rich Breccias (Eloise)
- Mt-rich Stratiform Iron with Cu-Au (Osborne, Starra)
- Mt+Po Stratiform Iron with Cu-Au (Monakoff)
- Po-rich linear horizons with Au and Cu (Cormorant)
- Mt-rich Stratiform Iron with Pb-Zn-Ag (Pegmont)
- Non-Magnetic Po-rich systems with Cu, Zn (Artemis)
- Carbonate-rich (non-magnetic) Cu (Great Australia)
- Skarn-like deposits (Near Mary K)
- REE-rich deposits (Merlin and Milo)

- Large variation in deposit style, but......
- Many different alteration styles
- All deposits have strong structural controls
Mineral System Ingredients (Isan Orogeny)

Stratiform Magnetite±Hematite
- Reactant for reduced and oxidized fluids in IOCG systems. Occurs in QF sequences. Predates Cu-Au.

Mafic Rocks
- Source of heat, sulfur and some metals.

Granitic Intrusion
- Source of heat and fluids, source of some metals.

Evaporites & Carbonates
- Reactant for reduced and oxidized fluids, source of metal carrying brines. (Carbonate is Gangue in many deposits)

Structural Controls
- Shear, Fault, Intersection, Jog, Contact, Breccia, etc.

Magma Mingling
AMS (Anisotropy of Magnetic Susceptibility)

- Anisotropy of magnetic susceptibility (AMS)
 - physical property of rock
 - Caused by preferred orientation of anisotropic magnetic minerals.
 - It is essentially a magnetic fabric
 - Can be used to define strain distribution prior to mineralisation
Key to AMS data

- **K1**: Lineation (Long Axis)
- **K2**: Intermediate
- **K3**: Short Axis (typically azimuth of shortening)

Great circle joining K1 and K2 defines the foliation.
TIMA
(Tescan Integrated Mineral Analyser)

• 10 μm resolution
• spectra-matched to international & in-house standards,
• Allows us to:
 • Observe textures
 • Quantify (consistently) mineralogy
 • Infer different styles of alteration.
 • & Different styles of mineralisation

Molybdenite Matrix Breccia – Merlin
Calcite-Pyrrhotite Matrix Breccia – Canteen

Magnetite-Pyrite-Apatite – Osborne
Leucophoenicite, Mn-calcite-Bixbyite-Garnet-Rhodochrosite – Maran
Ernest Henry Cu-Au
(Hematite-Magnetite)

Actual Geology
Interpreted Geology
Magnetics
Reassessment of Geophysical evidence

- Yes there are NE- fabrics
- But N-S and NNW fabrics control magnetite.
- The N-S structure passes straight through ore-body
- Mineralisation sits on intersection lineation

Magnetics 1st Vertical derivative of RTP
Matching AMS and Structural Controls

Hanging Wall AMS

Breccia AMS

Foot Wall AMS

K1 With Structure

Deformation Model for Ernest Henry Consistent with D4/D5 (≤1530 Ma)

Shortening Direction (Sigma 1, ≠ K3)

Plane within which K1 & K2 both lie

Dominant Lineation Main Shear Vector (K1)

Shortening Direction (Sigma 1, ≠ K3)

Equal-area projection

N=22

N=13

N=7
Integrating Mag + Geochem modelling

The ore “pipe” picks up multiple fabrics in different orientations, all along an intersection with a sub-vertical, N-S fault.
1. Hangingwall

2. Albite-Calcite Proto-breccia

3. Qtz-Calcite Py-Cp breccia

4. K-feld-Qtz-Mt breccia

4. K-feld-Ca-feld Sheared breccia

5. Qtz-Ca-feld Ca-feld sheared breccia

6. Foot wall

Ernest Henry DDH691

Mineral Count

Titanite
Ilmenite

Distal alteration
Relatively oxidized albite-titanate ± Fe-oxides
Reduced neutral
Highly oxidized alkaline
Distal alteration
Relatively reduced Ca-silicates -ilmenite ± po
Alteration Type as a function of petrophysics and mineralisation

Alteration Type

<table>
<thead>
<tr>
<th>Alteration</th>
<th>Chalcopyrite</th>
<th>Chamosite</th>
<th>Pyrite</th>
<th>Albite</th>
<th>Microcline</th>
<th>Quartz</th>
</tr>
</thead>
<tbody>
<tr>
<td>And-Alb+Potassic+Calcic</td>
<td>0.00</td>
<td>0.82</td>
<td>0.27</td>
<td>7.41</td>
<td>23.54</td>
<td>10.56</td>
</tr>
<tr>
<td>Magnetite-Apatite*</td>
<td>3.80</td>
<td>1.84</td>
<td>1.09</td>
<td>1.09</td>
<td>1.09</td>
<td>1.09</td>
</tr>
<tr>
<td>Potassic (Bt)</td>
<td>0.00</td>
<td>0.29</td>
<td>0.07</td>
<td>58.79</td>
<td>2.80</td>
<td>8.48</td>
</tr>
<tr>
<td>Potassic (Kf)</td>
<td>0.25</td>
<td>2.27</td>
<td>3.38</td>
<td>2.52</td>
<td>45.91</td>
<td>8.22</td>
</tr>
<tr>
<td>Potassic+ Cal-Qtz-Py</td>
<td>2.00</td>
<td>1.19</td>
<td>4.03</td>
<td>0.96</td>
<td>31.62</td>
<td>15.88</td>
</tr>
<tr>
<td>Qtz-Cal-Chl-Py±Cpp±Hem</td>
<td>2.88</td>
<td>10.26</td>
<td>13.96</td>
<td>0.16</td>
<td>2.70</td>
<td>33.56</td>
</tr>
<tr>
<td>Sodic (Ab-Mt-Ti)</td>
<td>0.00</td>
<td>0.31</td>
<td>0.31</td>
<td>54.96</td>
<td>3.73</td>
<td>2.38</td>
</tr>
<tr>
<td>Sodic + Potassic (Bt)</td>
<td>0.05</td>
<td>1.12</td>
<td>0.27</td>
<td>20.11</td>
<td>20.00</td>
<td>10.03</td>
</tr>
</tbody>
</table>

For Ernest Henry

Density (g/cm³)

<table>
<thead>
<tr>
<th>Alteration</th>
<th>Density (g/cm³)</th>
<th>Mag Sus K (SI)</th>
<th>Koenigsberger Ratio (Q)</th>
</tr>
</thead>
<tbody>
<tr>
<td>And-Alb+Potassic+Calcic</td>
<td>2.85</td>
<td>0.19</td>
<td>0.52</td>
</tr>
<tr>
<td>Magnetite-Apatite*</td>
<td>3.80</td>
<td>1.84</td>
<td>1.09</td>
</tr>
<tr>
<td>Potassic (Bt)</td>
<td>2.78</td>
<td>0.13</td>
<td>0.36</td>
</tr>
<tr>
<td>Potassic (Kf)</td>
<td>3.02</td>
<td>0.52</td>
<td>0.83</td>
</tr>
<tr>
<td>Potassic+ Cal-Qtz-Py</td>
<td>3.10</td>
<td>0.41</td>
<td>0.70</td>
</tr>
<tr>
<td>Qtz-Cal-Chl-Py±Cpp±Hem</td>
<td>3.27</td>
<td>0.34</td>
<td>0.47</td>
</tr>
<tr>
<td>Sodic (Ab-Mt-Ti)</td>
<td>3.14</td>
<td>0.76</td>
<td>0.62</td>
</tr>
<tr>
<td>Sodic + Potassic (Bt)</td>
<td>2.98</td>
<td>0.52</td>
<td>3.31</td>
</tr>
</tbody>
</table>

Magnetic Susceptibility (SI)

- **Magnetite-Apatite**: * indicates a potential indicator of magnetic anomalies in mineralisation.

Density (g/cm³)

<table>
<thead>
<tr>
<th>Density (g/cm³)</th>
<th>Magnetic Susceptibility (SI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.65</td>
<td>Sodic (Ab-Mt-Ti)</td>
</tr>
<tr>
<td>2.85</td>
<td>Potassic (Bt)</td>
</tr>
<tr>
<td>3.02</td>
<td>Potassic (Kf)</td>
</tr>
<tr>
<td>3.10</td>
<td>Potassic+ Cal-Qtz-Py</td>
</tr>
<tr>
<td>3.27</td>
<td>Qtz-Cal-Chl-Py±Cpp±Hem</td>
</tr>
<tr>
<td>3.14</td>
<td>Sodic (Ab-Mt-Ti)</td>
</tr>
<tr>
<td>2.98</td>
<td>Sodic + Potassic (Bt)</td>
</tr>
</tbody>
</table>

For Ernest Henry
Mineralisation

Geographic coordinate system

Equal-area projection N=5

Quartz
Cincohlore
Hematite Magnetite
[Unclassified]
Chalcopyrite
Calcite
Chamosite
Pyrite
Apotie
Siderite
Rubite
Calcite Fe
Zusmmatite
Calciocyanite
Pyrrhotite
Barite
Molybdenite

Chalcopyrite
Calcite
Pyrite
Hematite Magnetite
Chamosite
Clinochlore
Quartz
Ilmenite

Ernest Henry DDH691
K-alteration + Cu mineralization
Hangingwall Na-alteration
Footwall Ca-alteration

Pyrite > 10 vol %
Chalcopyrite > 2.5 vol %
Ilmenite > 0.5 vol %
Arsenopyrite
Magnetic Modelling

- Shearzones are highly magnetic
 - Sodic alt+Magnetite (reduced)
- Breccia is moderately magnetic
 - Mt-Destructive
- Orezone is weakly magnetic
 - Hematite-Pyrite (Oxidised)
- Inverse Bullseye mag target

<table>
<thead>
<tr>
<th>Alteration</th>
<th>Density (g/cm³)</th>
<th>Mag Sus K (SI)</th>
<th>Koenigsberger Ratio (Ω)</th>
</tr>
</thead>
<tbody>
<tr>
<td>And-Alb+Potassic+Calcic</td>
<td>2.85</td>
<td>0.19</td>
<td>0.52</td>
</tr>
<tr>
<td>Magnetite-Apatite*</td>
<td>3.80</td>
<td>1.84</td>
<td>1.09</td>
</tr>
<tr>
<td>Potassic (BT)</td>
<td>2.78</td>
<td>0.13</td>
<td>0.36</td>
</tr>
<tr>
<td>Potassic (KF)</td>
<td>3.02</td>
<td>0.52</td>
<td>0.83</td>
</tr>
<tr>
<td>Potassic+Cal-Qtz-Py</td>
<td>3.10</td>
<td>0.41</td>
<td>0.70</td>
</tr>
<tr>
<td>Qtz-Cal-Chl-PytCpsHem</td>
<td>3.27</td>
<td>0.34</td>
<td>0.47</td>
</tr>
<tr>
<td>Sodic (Ab-Mt-Ti)</td>
<td>3.14</td>
<td>0.76</td>
<td>0.62</td>
</tr>
<tr>
<td>Sodic + Potassic (BT)</td>
<td>2.98</td>
<td>0.52</td>
<td>3.31</td>
</tr>
</tbody>
</table>
Geophysical expression of mineralisation: Redox or Overprinting Metasomatic events??
A simple view of Deposit geophysics (IOCG)

Ultra reduced (magnetic Pyrrhotite) — Reduced — Oxidised

Ultra reduced (non-magnetic Pyrrhotite)

Reduced-type (magnetite + Pyrrhotite)

Intermediate-type (magnetite + pyrite)

Oxidised-type (Hematite-magnetite-pyrite)

Most known Cloncurry Types

Big Question: Are mineral gradients controlled by redox or overprinting relationships or both????
Petrophysics Overview

Uncover Cloncurry AMS19 | Mt-rich

Po-rich
- Maronan Po
- Cormorant-Po
- Can_Po
- Canteen_All
- Monakoff Hem-BIF
- Cormorant-Py

Py-rich
- Maronan Mt
- E1-Mt

Py, Po, Hem, Sph, Gal

Weak-Min
- Ernest Henry
- Gr. Aust (Mt-Cp)
- Can_Mt
- Kalam-Hem
- Monakoff-Ore
- Cormorant-Py

Mt-rich
- Gr. Aust (Py-Cp)
- E1-Hem
- SWAN
- Osborne
- Can_Po
- Can_Mt
- Monakoff Hem-BIF
- Cormorant-Py

Density (g/cc)

Magnetic Susceptibility (SI)

Avg Koenigsberger

Avg Susceptibility
Petrophysics Overview

Mag + Grav High

Intermediate

Reduced

Oxidised

Grav High

Density (g/cc)

Magnetic Susceptibility (Sl)

Avg Koenigsberger

Avg Susceptibility

Uncover Cloncurry AMS
Magnetic Susceptibility
Sulfur and Copper
Mag vs Min - Maronan

Mag Sus (Magnetite)

Lead

Zinc

Silver

Distal Magnetite-Apatite (Intermediate)

Core: Pyrrhotite-Galena (Reduced)
ca 1650 Ma (CS$_3$) Sedex/ BHT mineralisation

Fault zones are associated with:
- Potassic Alteration
- Mt-destructive (oxidising)
- Associated with Copper

<table>
<thead>
<tr>
<th>Maronan</th>
<th>Density (g/cm3)</th>
<th>Mag Sus K (SI)</th>
<th>Koenigsberger Ratio (Q)</th>
</tr>
</thead>
<tbody>
<tr>
<td>host rock</td>
<td>2.91</td>
<td>0.01</td>
<td>11.37</td>
</tr>
<tr>
<td>Po skarn</td>
<td>3.27</td>
<td>0.01</td>
<td>62.17</td>
</tr>
<tr>
<td>Potassic Alt</td>
<td>2.91</td>
<td>0.37</td>
<td>0.99</td>
</tr>
<tr>
<td>sedex</td>
<td>3.71</td>
<td>0.62</td>
<td>5.32</td>
</tr>
</tbody>
</table>
Redox zonation
Petrophysical Zonation

![Map of Petrophysical Zonation](image)

<table>
<thead>
<tr>
<th>Rock type</th>
<th>Density (g/cm³)</th>
<th>Mag Sus K (SI)</th>
<th>Koenigsberger Ratio (Q)</th>
<th>Anisotropy (P)</th>
<th>Fabric Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intact laminated siltstone</td>
<td>2.81</td>
<td>0.0014</td>
<td>-</td>
<td>1.05</td>
<td>Isotropic</td>
</tr>
<tr>
<td>Altered Toole Ck Volcanics</td>
<td>2.81</td>
<td>0.072</td>
<td>0.2</td>
<td>1.07</td>
<td>Isotropic</td>
</tr>
<tr>
<td>Mt + Chl Altered Metasedimentary</td>
<td>2.96</td>
<td>0.25</td>
<td>0.15</td>
<td>1.35</td>
<td>Foliation/Lineation</td>
</tr>
<tr>
<td>BIF West (Qtz-Hem)</td>
<td>3.19</td>
<td>0.03</td>
<td>12.27</td>
<td>1.02</td>
<td>Isotropic</td>
</tr>
<tr>
<td>BIF East (Qtz-Mt-Hem)</td>
<td>4.19</td>
<td>0.32</td>
<td>1.54</td>
<td>1.02</td>
<td>Isotropic</td>
</tr>
<tr>
<td>Magnetite BIF + Mt Alteration</td>
<td>3.36</td>
<td>0.51</td>
<td>0.08</td>
<td>1.48</td>
<td>Lineation/Foliation</td>
</tr>
<tr>
<td>Ore Zone (Mt-Cp-Py)</td>
<td>3.99</td>
<td>0.48</td>
<td>0.16</td>
<td>1.58</td>
<td>Lineation/Foliation</td>
</tr>
</tbody>
</table>

![Graph showing Correlation between K (SI) and Density](image)

S₀/₁
AMS
“D₁” Shear

Uncover Cloncurry AMS
Principal Component Analysis (PCA)

Comparing samples, or bits of systems, to allow us to see what may be related.

- 57 samples
- 30 elements
- <LOD substituted 50% LOD
- CLR for closure issues
- 61.03% summarised by PC5
- Bayesian mixture-modelling cluster
How can we use it??
- Future Research directions
Structural Framework

- Mapped strain in 16 deposits across the Inlier
- Well clustered results
- N-S “D2” fabrics dominant
- Major deposits also have a D4, NE-SW- fabric
- Some deposits have late D5 fabrics (reactivation)
Tectonothermal-metasomato-magma-metallogenic Summary

- Temporally Relates:
 - Thermal History
 - Tectonic Fabrics
 - Depositional Events
 - Alterations Styles
 - Magmatic Events
 - Mineralisation Styles
Exploring Undercover

• Don’t limit it to “undercover”
• There’s geophysically subtle targets left on the inlier too
• But possibly at deeper levels
• If drilling deep holes you need to get as much info as you can
• CSIRO has new technology to garner a lot of information from limited sampling
• We can build on these insights
• We hope to continue this work
Uncover Report – Summary Docs

• Integrated structural, metasomatic and metallogenic history of Cloncurry District.

• Geophysical Expressions of Cloncurry Mineral System.

• Chemical gradients in Cloncurry Mineral System: Vectors to grade?

• Multivariate analyses of geochemical data from Cloncurry deposits.

• Exploring for value: A geometallurgical perspective.

• Summary of methods.

QDEX Link: http://bit.ly/2jESB74
Deposit Reports

- Altia Pb-Zn deposit.
- Artemis Zn-Cu deposit.
- Cameron River Cu prospect.
- Canteen Cu-Au prospect.
- Cormorant Cu-Au Prospect.
- E1 Cu-Au deposit.
- Ernest Henry Cu-Au deposit.
- Kalman Mo-Re-Cu-Au deposit.
- Maronan Pb-Ag deposit.
- Merlin Mo-Re deposit.
- Monakoff Cu-Au-U deposit.
- Mount Colin Au-Cu deposit.
- Osborne Cu-Au deposit.
- Starra Cu-Au deposits.
- SWAN Cu-Au prospect.
- Trekelano Cu-Au Deposit